Abstract

The adjacent effect caused by a nonideal system point spread function (PSF) is an important source generating additional errors in radiometric measurements. Traditional recovery methods, i.e., inverse and Wiener filters, are attempted to restore the scene without the influence of RSF, which is inexistent in real observations and usually leads to the ringing artifact as well as uncertainties in noise amplification (NA). In this paper, a novel spatial-response matched filter (SRMF) and its processing method are established, where the aimed scene is supposed to be observed by instruments with higher PSF performance. Also, NA effects triggered by SRMF are precisely modeled and used for the further evaluation of radiometric accuracy (RA) variation after SRMF processing. Simulation results indicate that the SRMF method is more suitable for images with lower noise level and greater variation in the targets' radiation, where RA performance could be improved in a certain extent. Meanwhile, when the imager in a Multifunctional Transport Satellite is selected as the reference one with high-performance PSF, the SRMF for Fengyun-2 satellite is set up and applied for observations in thermal infrared band during April and May 2013. After SRMF processing, the recovered images show significant improvements in both visual effects and RA, where the increase of RA is expected to be 2-6 K at 190 K in statistics. Such a progress is believed to be beneficial to tropical cyclone intensity estimation as well as for other relevant products, i.e., cloud classification generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.