Abstract

Measurements of the incident fluence of HZE particles, as a function of LET, are used to determine absorbed dose as well as Quality Factors for assigning risk estimates to astronauts during manned space missions. These data are often based on thin solid state detectors that measure energy deposition, dE, and the assumption that the trajectory of the particle, dx, is equivalent to the thickness of the detector. Heavy ions often fragment while penetrating shielding materials in vehicles or habitats. Projectile fragments can be clustered spatially and temporally at the location of the thin detector which are then misclassified as a single particle. Eliminating the confounding effects of coincident events is the first step in extending the reach of flight instruments to identify the charge and velocity of individual particles. Identification of individual particles, in a fragmentation spectrum, will require that detection systems have sufficient segmentation to eliminate coincident events. The objective of this study was to reduce coincident events while avoiding over-design and complexity.Monte Carlo simulations, using Geant4, were performed for 4He, 12C, 28Si and 56Fe ions at energies of 300, 900 and 2400 MeV/n incident upon aluminum shields having areal densities of 5.4, 13.5, and 54 g/cm2. The identity, energy and spatial distribution of all particles downstream from the shielding were analyzed using a novel approach based on proximity distributions. Results indicated that pixel dimensions on the order of 1 mm were sufficient to reduce errors caused by coincident events for active space radiation detectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call