Abstract

The light field sectioning pyrometry (LFSP) has proven a significant advancement for in-situ measurement of flame temperature through a single light field camera. However, the spatial resolution of LFSP is limited, which severely inhibits the measurement accuracy. This paper aims to evaluate the spatial resolution of LFSP for flame temperature measurement quantitatively. A theoretical model of the spatial resolution is established based on optical parameters and point spread function of the light field camera. The spatial resolution is then numerically analyzed with different parameters of light field cameras. Based on the theoretical model, a novel cage-typed light field camera with a higher spatial resolution of LFSP is developed and experimentally evaluated. A significant improvement of spatial resolution about 17% and 50% in lateral and depth directions, respectively, is achieved. Results show that the spatial resolution is in good agreement with the theoretical model. The LFSP is then evaluated under different combustion cases and their temperatures are reconstructed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.