Abstract
Gas Electron Multipliers (GEMs) are used in many particle physics experiments, employing their `standard' configuration with amplification holes of 140 μm pitch in a hexagonal pattern. However, the collection of the charge cloud from the primary ionisation electrons from the drift region of the detector into the GEM holes affects the position information from the initial interacting particle. In this paper, the results from studies with a triple-GEM detector with an X-Y-strip readout anode are presented. It is demonstrated that GEMs with a finer hole pitch of here 90 μm improve the detector's spatial resolution. Within these studies, also the impact of the front-end electronics on the spatial resolution was investigated, which is briefly discussed in the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.