Abstract

We present a deep learning approach to obtain high-resolution (HR) fluorescence lifetime images from low-resolution (LR) images acquired from fluorescence lifetime imaging (FLIM) systems. We first proposed a theoretical method for training neural networks to generate massive semi-synthetic FLIM data with various cellular morphologies, a sizeable dynamic lifetime range, and complex decay components. We then developed a degrading model to obtain LR-HR pairs and created a hybrid neural network, the spatial resolution improved FLIM net (SRI-FLIMnet) to simultaneously estimate fluorescence lifetimes and realize the nonlinear transformation from LR to HR images. The evaluative results demonstrate SRI-FLIMnet's superior performance in reconstructing spatial information from limited pixel resolution. We also verified SRI-FLIMnet using experimental images of bacterial infected mouse raw macrophage cells. Results show that the proposed data generation method and SRI-FLIMnet efficiently achieve superior spatial resolution for FLIM applications. Our study provides a solution for fast obtaining HR FLIM images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.