Abstract
Multispectral satellite imagery is the primary data source for monitoring land cover change and characterizing land cover globally. However, the consistency of land cover monitoring is limited by the spatial and temporal resolutions of the acquired satellite images. The public availability of daily high-resolution images is still scarce. This paper aims to fill this gap by proposing a novel spatiotemporal fusion method to enhance daily low spatial resolution land cover mapping using a weakly supervised deep convolutional neural network. We merge Sentinel images and moderate resolution imaging spectroradiometer (MODIS )-derived thematic land cover maps under the application background of massive remote sensing data and the large spatial resolution gaps between MODIS data and Sentinel images. The neural network training was conducted on the public data set SEN12MS, while the validation and testing used ground truth data from the 2020 IEEE Geoscience and Remote Sensing Society data fusion contest. The proposed data fusion method shows that the synthesized land cover map has significantly higher spatial resolution than the corresponding MODIS-derived land cover map. The ensemble approach can be implemented for generating high-resolution time series of satellite images by fusing fine images from Sentinel-1 and -2 and daily coarse images from MODIS.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.