Abstract

Kinesins are molecular motors that produce mechanical work at the expense of ATP hydrolysis. Here, we studied Ncd ( non-claret disjunctional), a (−)-end-directed member of this superfamily. To gain insight into the mechanism by which Ncd generates force and movement, we measured distances between the heads in dimeric Ncd-250–700 using fluorescence resonance energy transfer (FRET). About 5% of Ncd heads were labeled with 1,5-IAEDANS (donor), and the remaining thiol groups were modified with QSY35-iodoacetamide (acceptor). Several lines of experimental evidence suggest that the probes were conjugated to Cys-670 in each head of the dimer. The measured donor–acceptor distance was about 35 Å. Nucleotides (ADP, ATP, and AMP-PNP) in the presence and absence of microtubules had only small effects on the interhead distances. Similar results were obtained for bidirectional Ncd mutant in which Asn-340 was replaced by a lysine. The results argue against models of Ncd movement in which the heads undergo large spatial rearrangements during mechanochemical cycle and suggest Gly-347 as a possible pivot point for the head rotation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.