Abstract

Leveraging wearable devices for motion reconstruction has emerged as an economical and viable technique. Certain methodologies employ sparse Inertial Measurement Units (IMUs) on the human body and harness data-driven strategies to model human poses. However, the reconstruction of motion based solely on sparse IMU data is inherently fraught with ambiguity, a consequence of numerous identical IMU readings corresponding to different poses. In this paper, we explore the spatial importance of sparse sensors, supervised by text that describes specific actions. Specifically, uncertainty is introduced to derive weighted features for each IMU. We also design a Hierarchical Temporal Transformer (HTT) and apply contrastive learning to achieve precise temporal and feature alignment of sensor data with textual semantics. Experimental results demonstrate our proposed approach achieves significant improvements in multiple metrics compared to existing methods. Notably, with textual supervision, our method not only differentiates between ambiguous actions such as sitting and standing but also produces more precise and natural motion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call