Abstract

ABSTRACTNatural snow avalanches have periodically damaged infrastructure and disrupted railroad and highway traffic at the southwestern corner of Glacier National Park, Montana. The 94-year history of these disruptions constitutes an uncommon record of natural avalanches spanning over nine decades and presents a unique opportunity to examine how natural avalanche frequency and minimum extent have varied over time due to climatic or biophysical changes. This study compared the historic record of natural avalanches in one avalanche path with tree-ring evidence of avalanches from 109 cross sections and increment cores collected in the same path. Results from combined historic and tree-ring records yielded 27 avalanche years in the 1910–2003 chronology, with the historic record alone underestimating avalanche years by half. Mean return period was 3.2 years. Interpolated maps allowed for more spatially precise estimates of return periods throughout the runout zone than previous studies. The maps show return periods increase rapidly downslope from 2.3 to 25 years. Avalanche years were associated with positive Snow Water Equivalent anomalies at a nearby snow course. Minimum avalanche extent was highly variable but not associated with snowpack anomalies. Most avalanche years coincided with years in which the mean January–February Pacific Decadal Oscillation (PDO) and El Niño–Southern Oscillation (ENSO) 3.4 indices were neutral. The findings suggest that changes in Pacific climate patterns that influence snowfall could also alter the frequency of natural snow avalanches and could thus change disturbance patterns in the montane forests of the canyon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.