Abstract

A highly selective planar band pass filter is proposed for satellite receivers to suppress intermodulation components. The 4-pole filter has a center frequency of 19.825 GHz with a bandwidth of 240 MHz. The measured quality factor is over 600 and the insertion losses are 4.1 dB. The micromachining technological process is used to fabricate this filter. A BCB (benzocyclobutene) thin layer is used as an electrical and mechanical support for the filter. The compatibility of the BCB with the spatial constraints was tested. Various tests were accomplished for this purpose and the results of all these tests are presented in the paper. The tests showed a very small influence of the temperature variation and high temperature storage test and practically no influence of the radiation test on the circuit.

Highlights

  • Research ArticleSpatial Qualification Tests for Highly Selective Compact Micromachined Band Pass Planar Filters

  • Today’s world is a vast network of global communication

  • A highly selective planar band pass filter is proposed for satellite receivers to suppress intermodulation components

Read more

Summary

Research Article

Spatial Qualification Tests for Highly Selective Compact Micromachined Band Pass Planar Filters. A highly selective planar band pass filter is proposed for satellite receivers to suppress intermodulation components. The 4-pole filter has a center frequency of 19.825 GHz with a bandwidth of 240 MHz. The measured quality factor is over 600 and the insertion losses are 4.1 dB. The micromachining technological process is used to fabricate this filter. A BCB (benzocyclobutene) thin layer is used as an electrical and mechanical support for the filter. The compatibility of the BCB with the spatial constraints was tested. Various tests were accomplished for this purpose and the results of all these tests are presented in the paper. The tests showed a very small influence of the temperature variation and high temperature storage test and practically no influence of the radiation test on the circuit

Introduction
International Journal of Microwave Science and Technology
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.