Abstract

Multiplexing enables the assessment of several markers on the same tissue while providing spatial context. Spatial Omics technologies allow both protein and RNA multiplexing by leveraging photo-cleavable oligo-tagged antibodies and probes, respectively. Oligos are cleaved and quantified from specific regions across the tissue to elucidate the underlying biology. Here, the study demonstrates that automated custom antibody visualization protocols can be utilized to guide ROI selection in conjunction with spatial proteomics assays. This specific method did not show acceptable performance with spatial transcriptomics assays. The protocol describes the development of a 3-plex immunofluorescent (IF) assay for marker visualization on an automated platform, using tyramide signal amplification (TSA) to amplify the fluorescent signal from a given protein target and increase the antibody pool to choose from. The visualization protocol was automated using a thoroughly validated 3-plex assay to ensure quality and reproducibility. In addition, the exchange of DAPI for SYTO dyes was evaluated to allow imaging of TSA-based IF assays on the spatial profiling platform. Additionally, we tested the ability of selecting small ROIs using the spatial transcriptomics assay to allow the investigation of highly-specific areas of interest (e.g., areas enriched for a given cell type). ROIs of 50 µm and 300 µm diameter were collected, which corresponds to approximately 15 cells and 100 cells, respectively. Samples were made into libraries and sequenced to investigate the capability to detect signals from small ROIs and profile-specific regions of the tissue. We determined that spatial proteomics technologies highly benefit from automated, standardized protocols to guide ROI selection. While this automated visualization protocol was not compatible with spatial transcriptomics assays, we were able to test and confirm that specific cell populations can successfully be detected even in small ROIs with the standard manual visualization protocol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call