Abstract

The interplay between inhibition and excitation is at the core of cortical network activity. In many cortices, including auditory cortex (ACx), interactions between excitatory and inhibitory neurons generate synchronous network gamma oscillations (30-70 Hz). Here, we show that differences in the connection patterns and synaptic properties of excitatory-inhibitory microcircuits permit the spatial extent of network inputs to modulate the magnitude of gamma oscillations. Simultaneous multiple whole-cell recordings from connected fast-spiking interneurons and pyramidal cells in L2/3 of mouse ACx slices revealed that for intersomatic distances <50 microm, most inhibitory connections occurred in reciprocally connected (RC) pairs; at greater distances, inhibitory connections were equally likely in RC and nonreciprocally connected (nRC) pairs. Furthermore, the GABA(B)-mediated inhibition in RC pairs was weaker than in nRC pairs. Simulations with a network model that incorporated these features showed strong, gamma band oscillations only when the network inputs were confined to a small area. These findings suggest a novel mechanism by which oscillatory activity can be modulated by adjusting the spatial distribution of afferent input.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.