Abstract

BackgroundTo predict the risk of infectious diseases originating in wildlife, it is important to identify habitats that allow the co-occurrence of pathogens and their hosts. Puumala hantavirus (PUUV) is a directly-transmitted RNA virus that causes hemorrhagic fever in humans, and is carried and transmitted by the bank vole (Myodes glareolus). In northern Sweden, bank voles undergo 3–4 year population cycles, during which their spatial distribution varies greatly.MethodsWe used boosted regression trees; a technique inspired by machine learning, on a 10 – year time-series (fall 2003–2013) to develop a spatial predictive model assessing seasonal PUUV hazard using micro-habitat variables in a landscape heavily modified by forestry. We validated the models in an independent study area approx. 200 km away by predicting seasonal presence of infected bank voles in a five-year-period (2007–2010 and 2015).ResultsThe distribution of PUUV-infected voles varied seasonally and inter-annually. In spring, micro-habitat variables related to cover and food availability in forests predicted both bank vole and infected bank vole presence. In fall, the presence of PUUV-infected voles was generally restricted to spruce forests where cover was abundant, despite the broad landscape distribution of bank voles in general. We hypothesize that the discrepancy in distribution between infected and uninfected hosts in fall, was related to higher survival of PUUV and/or PUUV-infected voles in the environment, especially where cover is plentiful.ConclusionsMoist and mesic old spruce forests, with abundant cover such as large holes and bilberry shrubs, also providing food, were most likely to harbor infected bank voles. The models developed using long-term and spatially extensive data can be extrapolated to other areas in northern Fennoscandia. To predict the hazard of directly transmitted zoonoses in areas with unknown risk status, models based on micro-habitat variables and developed through machine learning techniques in well-studied systems, could be used.

Highlights

  • To predict the risk of infectious diseases originating in wildlife, it is important to identify habitats that allow the co-occurrence of pathogens and their hosts

  • We used boosted regression trees, a technique inspired by machine learning, on a 10-year dataset to (a) identify micro-habitat characteristics important for bank vole presence, and more importantly, the presence of infected bank voles in spring and fall

  • We used boosted regression trees (BRT), a technique inspired by machine learning methods and characterized by strong predictive performance [43, 44]

Read more

Summary

Introduction

To predict the risk of infectious diseases originating in wildlife, it is important to identify habitats that allow the co-occurrence of pathogens and their hosts. In northern Sweden, bank voles undergo 3–4 year population cycles, during which their spatial distribution varies greatly. Zoonotic disease hazard is contingent upon the spatial overlap between pathogens and their hosts and vectors, realized within an environmental envelope shaped by biotic and abiotic factors. The transmission of zoonotic pathogens requires close contact between infected individuals on one hand and vectors or susceptible hosts on the other, and is essentially a spatial phenomenon [1]. The recognition of habitat variables that capacitate pathogen, host, and vector co-occurrence enables the prediction of zoonotic hazard in a world where emerging infectious diseases pose an increasing socio-economic threat [2]. The density and distribution of some host populations vary considerably between seasons and years, which poses an additional challenge of identifying habitats that serve as ‘refugia’ for a pathogen when its host distribution contracts [10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call