Abstract

AbstractThe authors develop a methodology for predicting unobserved values in a conditionally lognormal random spatial field like those commonly encountered in environmental risk analysis. These unobserved values are of two types. The first come from spatial locations where the field has never been monitored, the second, from currently monitored sites which have been only recently installed. Thus the monitoring data exhibit a monotone pattern, resembling a staircase whose highest step comes from the oldest monitoring sites. The authors propose a hierarchical Bayesian approach using the lognormal sampling distribution, in conjunction with a conjugate generalized Wishart distribution. This prior distribution allows different degrees of freedom to be fitted for individual steps, taking into account the differential amounts of information available from sites at the different steps in the staircase. The resulting hierarchical model is a predictive distribution for the unobserved values of the field. The method is demonstrated by application to the ambient ozone field for the southwestern region of British Columbia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call