Abstract

There is mounting evidence that both patch networks and the intervening matrix influence species persistence in fragmented landscapes, though the relative importance of each of these factors in determining spatial population structure remains poorly understood. This study examined this issue using a three-year data set on the distribution of Cabrera voles ( Microtus cabrerae) in Mediterranean farmland. The spatial pattern appeared consistent with a metapopulation structure, as voles occupied discrete tall herb patches scattered across the agricultural landscape, where local extinctions and colonizations induced temporal changes in occupancy patterns. Patch dynamics determined deviations from classical metapopulation assumptions, with over half the extinctions resulting from agricultural disturbance or vegetation succession, and recolonizations often occurring after the recovery of suitable habitat conditions sometime after disturbance. Occupancy in undisturbed patches was more stable, with vole occurrence in one year strongly reflecting that in the previous year. Overall, occupancy increased with both patch size and connectivity, but the unique contribution of patch variables to explain variation in vole occurrence was far smaller than that of matrix attributes. Voles occurred more often in patches surrounded by natural pastures, while prevalence declined with increasing cover by shrubland, pine plantations, improved pastures and grazed cropland. It is hypothesised that unfavourable land uses may increase the effective isolation of habitat patches through increased predation risk of dispersing voles. Conservation of the Cabrera vole in Mediterranean farmland should thus strive to maintain lightly grazed fields surrounding well-connected networks of suitable habitat patches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call