Abstract

We study the spatial decay of time-periodic Navier–Stokes flow at the rate |x|^{-1} with/without wake structure in 3D exterior domains when a rigid body moves periodically in time. In this regime the existence of time-periodic solutions was established first in the 2006 paper by Galdi and Silvestre, however, with little information about spatial behavior at infinity so that uniqueness of solutions was not available. This latter issue has been addressed by Galdi, who has recently succeeded in construction of a unique time-periodic solution with spatial behavior mentioned above if translational and angular velocities of the body fulfill, besides smallness and regularity, either of the following assumptions: (i) translation or rotation is absent; (ii) both velocities are parallel to the same constant vector. This paper shows the existence of a unique time-periodic Navier–Stokes flow in the small with values in the weak-L^3 space and then deduces the desired pointwise decay of the solution under some condition on the rigid motion of the body, that covers the cases (i), (ii) mentioned above.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.