Abstract

The transport properties of the superconducting Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn layers in the strands strongly depend on the strain state. Knowledge of the influence of axial strain, periodic bending and contact stress on the critical current (I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> ) of the used strands is inevitable to gain sufficient confidence in an economic design and stable operation of ITER Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn. In the past years we have measured the Ic and n-value of various ITER strands with different layout in the TARSIS facility, when subjected to spatial periodic contact stress at a temperature of 4.2 K and in a magnet field of 12 T. Recently we have made the setup suitable for application of homogeneous load along the length of the wire (125 mm) in order to evaluate possible differences related to spatial stress and possible current distribution. We present an overview of the results obtained so far on an ITER TF bronze and internal tin strand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.