Abstract
Climatic fluctuations have been documented to strongly affect Arctic marine ecosystems. Plankton assemblages serve as the most sensitive indicators of such environmental forcing. We conducted a study to investigate the spatial variability of chlorophyll a (Chl-a) concentration during two pre-bloom periods (March–April 2021 and February–March 2022) in relation to the distribution of different water masses and associated properties. The upper 50 m layer of the water column was homogeneous and stable, characterized by high nutrient concentrations. Our mapping of the Barents Sea based on Chl-a concentrations revealed low estimates during the winter period. In contrast, two distinct Chl-a peaks were observed in the spring. The first region with high Chl-a concentrations was identified in Murmansk Coastal Water and Atlantic Water (0.7–1.4 mg m−3), reflecting the positive impact of the frontal zone between these interacting water masses. The second region with elevated Chl-a concentrations (0.9–1.1 mg m−3) was located in Kolguev-Pechora Water near the southeastern ice edge. Cold water regions (Barents Sea Water, Arctic Water, Novaya Zemlya Coastal Water) exhibited low spring Chl-a concentrations (0.03–0.3 mg m−3). Generalized additive models identified hydrological variables (temperature and salinity), dissolved oxygen content, and nutrient concentrations (nitrite, nitrate, phosphate) as significant predictors explaining a substantial portion of the Chl-a variability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.