Abstract

Steady-state multiplicity in individual catalyst particles can be exploited to produce concentration patterns in a catalytic reactor. Thus, stable, steady-state, spatial patterns can be created in a packed bed reactor by providing for an initial pattern using multiple feeds at different points along the length of the reactor as a start-up strategy. It is shown that the formation of such patterns when properly selected can remarkedly improve selectivity and conversion in reaction systems. Computational demonstrations are made with a reaction system in which the desired product must be obtained by reacting two different intermediate products formed by a single primary reactant under different reaction conditions. The patterns that produce high selectivity are those that alternately produce the intermediates in quick succession, so that the main product can be produced promptly without loss of reactor space in the flowing reaction mixture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call