Abstract

Lake Erie walleye Sander vitreus exhibits significant interannual variability in year-class strength. Recent research revealed the importance of larval growth and survival rates in determining walleye year-class strength in western Lake Erie, indicating that spatial and temporal overlap of larvae with good habitat conditions (e.g., abundant prey, warm waters) promoted walleye growth and survival. To assess the spatial overlap between walleye larvae and habitat parameters (water depth, temperature, water clarity, prey density) in western Lake Erie, we evaluated the spatial distribution of walleye larvae and these habitat parameters with intensive sampling at 30 to 36 sites during spring 1994–1999. We analyzed spatial relationships among pelagic walleye larvae and various habitat attributes using a geographic information system and principal components analysis. Larval walleye density was consistently highest at nearshore sites during all years and showed a high degree of spatial overlap with high ichthyoplankton density, and warm water temperatures. Larval walleye density was negatively associated with water depth and water clarity. Two principal components represented 79.6% of the total variability in site attributes. Principle components analysis supported our spatial analysis by graphically separating sites into distinct groups based on larval walleye density and habitat attributes. These analyses indicated that similar relationships between larval distribution and habitat attributes occur each year, emphasizing the importance of nearshore coastal zones as nursery areas for walleye.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call