Abstract
AbstractUnderstanding large-scale patterns of biodiversity and their drivers remains central in ecology. Many hypotheses have been proposed, including hydrothermal dynamic hypothesis, tropical niche conservatism hypothesis, Janzen’s hypothesis and a combination model containing energy, water, seasonality and habitat heterogeneity. Yet, their relative contributions to groups with different lifeforms and range sizes remain controversial, which have limited our ability to understand the general mechanisms underlying species richness patterns. Here we evaluated how lifeforms and species range sizes influenced the relative contributions of these three hypotheses to species richness patterns of a tropical family Moraceae. The distribution data of Moraceae species at a spatial resolution of 50 km × 50 km and their lifeforms (i.e. shrubs, small trees and large trees) were compiled. The species richness patterns were estimated for the entire family, different life forms and species with different range sizes separately. The effects of environmental variables on species richness were analyzed, and relative contributions of different hypotheses were evaluated across life forms and species range size groups. The species richness patterns were consistent across different species groups and the species richness was the highest in Sichuan, Guangzhou and Hainan provinces, making these provinces the hotspots of this family. Climate seasonality is the primary factor in determining richness variation of Moraceae. The best combination model gave the largest explanatory power for Moraceae species richness across each group of range size and life forms followed by the hydrothermal dynamic hypothesis, Janzen’s hypothesis and tropical niche conservatism hypothesis. All these models has a large shared effects but a low independent effect (< 5%), except rare species. These findings suggest unique patterns and mechanisms underlying rare species richness and provide a theoretical basis for protection of the Moraceae species in China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.