Abstract

Quasiparticles in semiconductors---such as microcavity polaritons---can form condensates in which the steady-state density profile is set by the balance of pumping and decay. By taking account of the polarization degree of freedom for a polariton condensate, and considering the effects of an applied magnetic field, we theoretically discuss the interplay between polarization dynamics, and the spatial structure of the pumped decaying condensate. If spatial structure is neglected, this dynamics has attractors that are linearly polarized condensates (fixed points), and desynchronized solutions (limit cycles), with a range of bistability. Considering spatial fluctuations about the fixed point, the collective spin modes can either be diffusive, linearly dispersing, or gapped. Including spatial structure, interactions between the spin components can influence the dynamics of vortices; produce stable complexes of vortices and rarefaction pulses with both co- and counter-rotating polarizations; and increase the range of possible limit cycles for the polarization dynamics, with different attractors displaying different spatial structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.