Abstract

This work explains the spatial arrangement of two derivatives of 1-phenyl-2H,6H-imidazo[1,5-c]quinazoline-3,5-dione (PIQ), i.e., diester 2,6-bis(ethoxycarbonylmethyl)-1-phenylimidazo[1,5-c]quinazoline-3,5-dione (BEPIQ) and 2,6-bis(2-hydroxyethyl)-1-phenylimidazo[1,5-c]quinazoline-3,5-dione (BHEPIQ). Studies of a single crystal by X-ray crystallography showed a different way of arranging the diol and diester molecules in the crystals. Quantum-mechanical modeling showed the overlapping of the highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) of BEPIQ enantiomeric molecules in relation to each other in the “head to tail” position. The formation of charge-transfer complexes stabilizes the system and is responsible for the packing density of the BEPIQ molecules in the crystal. The BEPIQ enantiomeric pairs are positioned at an angle of 67° to each other forming the herringbone in the crystal lattice. In addition, the BEPIQ crystal has the ability to form inclusion compounds. Based on the calculations, it was found that the overlapping of molecular orbitals of BHEPIQ molecules is not possible. It results from a different distribution of electron density in imidazoquinazoline ring as compared to the molecule of the BEPIQ. The formation of intermolecular hydrogen bonds is responsible for the spatial arrangement of the BHEPIQ molecules. The BHEPIQ molecules are arranged in a “head to head” position, and in the crystal, they form stackings.

Highlights

  • There are interactions between molecules in the crystal that keep them close to each other

  • The attractive interactions include van der Waals interactions and interactions related to the transfer of charge, i.e., hydrogen bonds, π-π interactions, or charge-transfer complexes

  • The van der Waals interactions are weak interactions between the molecules. They are the sum of forces: dispersive, electrostatic, inductive, and repulsive

Read more

Summary

Introduction

There are interactions between molecules in the crystal that keep them close to each other. Intermolecular interactions can be divided into long-range (attractive forces) and short-range interactions (repulsive forces). The result of these interactions leads to a state of equilibrium. The van der Waals interactions are weak interactions between the molecules. They are the sum of forces: dispersive, electrostatic, inductive, and repulsive. It is possible to indicate the so-called van der Waals radius in determining the distance that two solidstate atoms can approach without interactions between their valence electrons [1,2,3]

Objectives
Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.