Abstract
Spatial orientation strongly relies on visual and whole-body information available while moving through space. As virtual environments allow to isolate the contribution of visual information from the contribution of whole-body information, they are an attractive methodological means to investigate the role of visual information for spatial orientation. Using an elementary spatial orientation task (triangle completion) in a simple virtual environment we studied the effect of amount of simultaneously available visual information (geometric field of view) and triangle layout on the integration and uptake of directional (turn) and distance information under visual simulation conditions. While the amount of simultaneously available visual information had no effect on homing errors, triangle layout substantially affected homing errors. Further analysis of the observed homing errors by means of an Encoding Error Model revealed that subjects navigating under visual simulation conditions had problems in accurately taking up and representing directional (turn) information, an effect which was not observed in experiments reported in the literature from similar whole-body conditions. Implications and prospects for investigating spatial orientation by means of virtual environments are discussed considering the present experiments as well as other work on spatial cognition using virtual environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.