Abstract

Previous research has shown that stimulation of the central visual field with radial flow patterns (produced by forward motion) can induce perceived self-motion, but has failed to demonstrate effects on postural stability of either radial flow patterns or lamellar flow patterns (produced by horizontal translation) in the central visual field. The present study examined the effects of lamellar and radial flow on postural stability when stimulation was restricted to the central visual field. Displays simulating observer motion through a volume of randomly positioned points were observed binocularly through a window that limited the field of view to 15 degrees. The velocity of each display varied according to the sum of four sine functions of prime frequencies. Changes in posture were used to measure changes in perceived spatial orientation. A frequency analysis of postural sway indicated that increased sway occurred at the frequencies of motion simulated in the display for both lamellar and radial flow. These results suggest that both radial and lamellar optic flow are effective for determining spatial orientation when stimulation is limited to the central visual field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call