Abstract

Eukaryotic cells spatially organize mRNA processes such as translation and mRNA decay. Much less is clear in bacterial cells where the spatial distribution of mature mRNA remains ambiguous. Using a sensitive, quantitative fluorescence in situ hybridization based-method, we show here that in Caulobacter crescentus and Escherichia coli, chromosomally-expressed mRNAs largely display limited dispersion from their site of transcription during their lifetime. We estimate apparent diffusion coefficients at least 2 orders of magnitude lower than expected for freely diffusing mRNA, and provide evidence in C. crescentus that this mRNA localization restricts ribosomal mobility. Furthermore, C. crescentus RNase E appears associated with the DNA independently of its mRNA substrates. Collectively, our findings reveal that bacteria can spatially organize translation and potentially mRNA decay by using the chromosome layout as a template. This chromosome-centric organization has important implications for cellular physiology and for our understanding of gene expression in bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call