Abstract
The sweet steviol glycosides found in the leaves of Stevia rebaudiana Bert. are derived from the diterpene steviol which is produced from a branch of the gibberellic acid (GA) biosynthetic pathway. An understanding of the spatial organisation of the two pathways including subcellular compartmentation provides important insight for the metabolic engineering of steviol glycosides as well as other secondary metabolites in plants. The final step of GA biosynthesis, before the branch point for steviol production, is the formation of (-)-kaurenoic acid from (-)-kaurene, catalysed by kaurene oxidase (KO). Downstream of this, the first committed step in steviol glycoside synthesis is the hydroxylation of kaurenoic acid to form steviol which is then sequentially glucosylated by a series of UDP-glucosyltransferases (UGTs) to produce the variety of steviol glycosides. The subcellular location of KO and three of the UGTs involved in steviol glycoside biosynthesis was investigated by expression of GFP fusions and cell fractionation which revealed KO to be associated with the endoplasmic reticulum and the UGTs in the cytoplasm. It has also been shown by expressing the Stevia UGTs in Arabidopsis that the pathway can be partially reconstituted by recruitment of a native Arabidopsis glucosyltransferase.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.