Abstract

Monitoring systems in general have to meet numerous requirements, the most important of which are representativeness and cost efficiency. The aim of the study, therefore, was to present the spatial optimization of the monitoring networks of a river (the Danube), a wetland-lake system (Kis-Balaton & Lake Balaton), and a sub-surface water system in the watershed of Lake Neusiedl/Fertő over a period of approximately two decades using a novel method, Combined cluster and discriminant analysis (CCDA). In the case of the river the results show that the monitoring network yields redundant information on certain sections, so that of 12 sampling sites 3 can be discarded. It was not, however, enough to consider just the tributaries when it comes to optimization. In the case of the wetland (Kis-Balaton) one pair of sampling sites out of 12, while in the case of Lake Balaton 5 out of 10 can be abandoned. For the sub-surface water system, however, all the 50 sites contained exclusive information; hence, all of these were shown to be necessary. In addition, neighboring sampling sites were compared pairwise using CCDA and the corresponding results were visualized in diagrams or so called “difference maps” indicating the location of the biggest differences. This approach also indicates the researcher where to place new sampling sites should the possibility arise. The discussed methodology proved to be highly useful in the optimization of the monitoring networks of the presented water systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.