Abstract
Conservation practices (CPs) are used in agricultural watersheds to reduce soil erosion and improve water quality, leading to a sustainable management of natural resources. This is especially important as more pressure is applied on agricultural systems by a growing population and a changing climate. A challenge persists, however, in optimizing the implementation of these practices given their complex, non-linear, and location-dependent response. This study integrates watershed modeling using the Annualized Agricultural Non-Point-Source model and a GIS-based field scale localization and characterization of CPs. The investigated practices are associated with the implementation of riparian buffers, sediment basins, crop rotations, and the conservation reserve program. A total of 33 conservation scenarios were developed to quantify their impact on sediment erosion reduction. This approach was applied in an ungauged watershed as part of the Mississippi River Basin initiative aiming at reducing one of the largest aquatic dead zones in the globe. Simulation results indicate that the targeted approach has a significant impact on the overall watershed-scale sediment load reduction. Among the different evaluated practices, riparian buffers were the most efficient in sediment reduction. Moreover, the study provides a blueprint for similar investigations aiming at building decision-support systems and optimizing the placement of CPs in agricultural watersheds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.