Abstract

We present a detailed study of the dynamics of light in passive nonlinear resonators with shallow and deep intracavity periodic modulation of the refractive index in both longitudinal and transverse directions of the resonator. We investigate solutions localized in the transverse direction (so-called Bloch cavity solitons) by means of envelope equations for underlying linear Bloch modes and solving Maxwell’s equations directly. Using a round-trip model for forward and backward propagating waves we review different types of Bloch cavity solitons supported by both focusing (at normal diffraction) and defocussing (at anomalous diffraction) nonlinearities in a cavity with a weak-contrast modulation of the refractive index. Moreover, we identify Bloch cavity solitons in a Kerr-nonlinear all-photonic crystal resonator solving Maxwell’s equations directly. In order to analyze the properties of Bloch cavity solitons and to obtain analytical access we develop a modified mean-field model and prove its validity. In particular, we demonstrate a substantial narrowing of Bloch cavity solitons near the zero-diffraction regime. Adjusting the quality factor and resonance frequencies of the resonator optimal Bloch cavity solitons in terms of width and pump energy are identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call