Abstract

The massive adoption of smart phones and other mobile devices has generated humongous amount of spatial and spatio-temporal data. The importance of spatial analytics and aggregation is ever-increasing. An important challenge is to support interactive exploration over such data. However, spatial analytics and aggregation using all data points that satisfy a query condition is expensive, especially over large data sets, and could not meet the needs of interactive exploration. To that end, we present novel indexing structures that support spatial online sampling and aggregation on large spatial and spatio-temporal data sets. In spatial online sampling, random samples from the set of spatial (or spatio-temporal) points that satisfy a query condition are generated incrementally in an online fashion. With more and more samples, various spatial analytics and aggregations can be performed in an online, interactive fashion, with estimators that have better accuracy over time. Our design works well for both memory-based and disk-resident data sets, and scales well towards different query and sample sizes. More importantly, our structures are dynamic, hence, they are able to deal with insertions and deletions efficiently. Extensive experiments on large real data sets demonstrate the improvements achieved by our indexing structures compared to other baseline methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.