Abstract

The spatial development of disturbances with small and moderate amplitudes in a two-dimensional (2-D) supersonic flat-plate boundary layer at Mach 4.8 is investigated using direct numerical simulations based on the compressible 3-D Navier-Stokes equations. Disturbances are introduced into the boundary layer by blowing and suction within a narrow disturbance strip at the wall. In response to the timewise periodic forcing, two types of disturbance waves are generated, a “first-mode” wave and a “multiple-viscous-solution.” The “multiple-viscous-solution” was described by Mack (1969, 1984) but was not seen before in a direct numerical simulation. The results of the simulations are compared with results of linear stability theory, and the agreement is very good. In simulations for larger amplitudes, fundamental resonance is observed, where both types of 3-D waves are nonlinearly amplified and synchronize their phase velocities with the 2-D disturbance waves. Subharmonic resonance is found for 3-D waves with large wave numbers, where the phase velocities of the linear 2-D and 3-D waves are nearly the same.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call