Abstract
Ecological welfare performance (EWP) serves as a crucial measure for assessing the green development of a region. Exploring the spatial characteristics, network structure, and transfer paths of its specific stages is crucial for grasping an internal space’s EWP and optimizing urban ecological planning. This research employed a two-stage DEA model to assess the EWP of 284 Chinese cities from 2007 to 2022 and decompose it into an ecological–economic transition stage (L1) and an economic welfare transition stage (L2). Second, a social network analysis (SNA) was conducted to describe the EWP sub-stages’ network structure and construction mechanism. Finally, the transmission path process of EWP was revealed through Markov chains. It is found that (1) the overall trend of EWP is rising and then falling, with L2 as the critical constraint; (2) the network structure of the two stages is complex, dominated by industrial structure, urbanization, and healthcare level; and (3) ‘club integration’ constrains the transfer across EWP in the short term. Compared with L2, which has a lower probability of interstate transfer, L1 has a greater likelihood of transfer to a higher level. This paper provides suggestions for the optimal allocation of ecological resources in Chinese cities through the analysis of EWP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.