Abstract
Interferometry is a basic tool to resolve coherent properties in a wide range of light or matter wave phenomena. In the strong-field regime, interferometry serves as a fundamental building block in revealing ultrafast electron dynamics. In this work we manipulate strong-field-driven electron trajectories and probe the coherence of a molecular wavefunction by inducing an interferometer on a microscopic level. The two arms of the interferometer are controlled by a two-colour field, while the interference pattern is read via advanced, three-dimensional high-harmonic spectroscopy. This scheme recovers the spectral phase information associated with the structure of molecular orbitals, as well as the spatial properties of the interaction itself. Zooming into one of the most fundamental strong-field phenomena—field-induced tunnel ionization—we reconstruct the angle at which the electronic wavefunction tunnels through the barrier and follow its evolution with attosecond precision. A single-molecule attosecond interferometry that can retrieve the spectral phase information associated with the structure of molecular orbitals, as well as the phase accumulated by an electron as it tunnels out, is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.