Abstract
We consider the physical layer security (PLS) problem in multi-user non-orthogonal multiple access (NOMA) enabled multiple-input multiple-output (MIMO) visible light communication systems intercepted by a passive eavesdropper (Eve). We propose a novel transmit precoding scheme based on receive spatial modulation (RSM) to degrade the signal-to-interference-noise ratio (SINR) of Eve by exploiting only the slow-fading characteristics of the visible light channel of the legitimate users (Bobs). The proposed PLS precoder is reinforced with secret parameter exchange with Bobs and a CSI acquisition model is proposed to reduce the PLS algorithm's computational load substantially at the transmitter. The closed-form expressions for the achievable secrecy rates and their upper and lower bounds are derived. Via Monte Carlo simulations, we confirm that Bobs can successfully decode their information in various user configurations while Eve's received SINR is significantly worsened by the jamming signal induced by the proposed precoder with secret key exchange. It is also shown that Eve's bit error rate (BER) is increased to the 0.5-level for almost any position in the considered indoor environment. Finally, we corroborate the derived secrecy expressions by computer simulations and show that the proposed scheme provides PLS for Bobs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.