Abstract

The construction of a wall at the United States-Mexico border is known to impede and deter movement of terrestrial wildlife between the two countries. One such species is the jaguar, in its northernmost range in the borderlands of Arizona and Sonora. We developed an anisotropic cost distance model for jaguar in a binational crossing area of the Madrean Sky Islands at the United States-Mexico border in Southern Arizona as a case study by using previously collected GPS tracking data for jaguars, bioenergetic calculations for pumas, and a digital elevation model. This model describes projected energy expenditure for jaguar to reach key water sources north of the international border. These desert springs and the broader study region provide vital habitat for jaguar conservation and reintroduction efforts in the United States. An emerging impediment to jaguar conservation and reintroduction is border infrastructure including border wall. By comparing walled and un-walled border sections, and three remediation scenarios, we demonstrate that existing border infrastructure significantly increases energy expenditure by jaguars and that some partial remediation scenarios are more beneficial than others. Our results demonstrate opportunities for remediation. Improved understanding of how border infrastructure impacts physiological requirements and resulting impacts to jaguar and other terrestrial wildlife in the United States-Mexico borderlands may inform conservation management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call