Abstract
A novel approach to fuzzy clustering for image segmentation is described. The fuzzy C-means objective function is generalized to include a spatial penalty on the membership functions. The penalty term leads to an iterative algorithm that is only slightly different from the original fuzzy C-means algorithm and allows the estimation of spatially smooth membership functions. To determine the strength of the penalty function, a criterion based on cross-validation is employed. The new algorithm is applied to simulated and real magnetic resonance images and is shown to be more robust to noise and other artifacts than competing approaches.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.