Abstract

In this research endeavor, we undertook a comprehensive examination of the factors influencing the energy consumption of LEED-certified buildings, employing both a general linear regression model and a spatial delayed regression model. Gaining a profound understanding of energy utilization patterns within LEED-certified structures can significantly contribute to advancing eco-friendly construction practices. Our investigation draws upon data from a 2010 study conducted at the University of Wisconsin—Madison (UW), encompassing various independent variables, such as temperature, that exhibit some degree of correlation with energy consumption in LEED-certified buildings. The principal objective of this study is twofold: firstly, to ascertain the significance of specific exogenous variables, notably temperature, and secondly, to explore the impact of spatial factors, such as function and location, on energy usage. Our research framework encompasses meticulous data collection and rigorous analysis, culminating in the presentation and discussion of our findings. Notably, our study unveils intriguing insights. Contrary to conventional assumptions, we discovered that the energy consumption of LEED-certified buildings does not exhibit a robust linear association with average annual temperature, the count of power plants within a 50 mile radius, or the LEED rating itself. However, our spatial regression models unveil a compelling narrative: the geographic distribution and functional diversity of distinct LEED buildings wield discernible influence over energy consumption patterns. The implications of our research resonate profoundly in the realm of LEED-certified building design and construction. Architects, builders, and stakeholders should consider the nuanced interplay of spatial variables and geographical positioning in the pursuit of optimal energy efficiency. Moreover, our findings stimulate further inquiry in this field, paving the way for future investigations aimed at refining sustainable building practices and enhancing our understanding of energy consumption within LEED-certified structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.