Abstract

We demonstrate that a femtosecond laser pulse strongly focused in air can produce a highly symmetric damage pattern on glass. This damage pattern contains a series of near-perfect radial rings, with diameters much larger than the predicted focal spot diameter. These rings disappear when the experiment is conducted in vacuum, indicating atmospheric involvement. Surprisingly, the shape and size of the rings seem to be nearly independent of the shape of the generating laser beam, showing dramatic spatial mode cleaning. A “half moon” initial laser mode created by obscuring one side of the round beam produces rings of similar quality to those obtained with the unclipped beam. While spatial mode cleaning has previously been reported in filaments, this is the most dramatic demonstration of the effect that we are aware of. We argue that the effect is due primarily to ionization, in contrast to studies in longer filaments that attribute it to self-focusing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.