Abstract

We revisit a spatial metapopulation model on continuous space as a stochastic point pattern dynamics. In the model, local patches as points are distributed with a certain spatial configuration and status of each patch changes stochastically between occupied and empty: an occupied patch becomes empty by local extinction and an empty patch becomes occupied both by local and global colonization. We carry out simulation analysis and derive an analytical model in terms of singlet, pair and triplet probabilities that describe the stochastic dynamics. Using a simple closure that approximates triplet probabilities by singlet and pair probabilities, we show that equilibrium singlet and pair probabilities can be analytically derived. The derived equilibrium properties successfully describe simulation results under a certain condition where the range of local colonization and the proportion of global colonization play key roles. Our model is an extension of the classical non-spatial Levins model to a spatially explicit metapopulation model. We appeal the advantage of point pattern approach to study spatial dynamics in general ecology and call for the need to deepen our understanding of mathematical tools to explore point pattern dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call