Abstract
The article by Goodrich-Hunsaker and Hopkins (2010, this issue) takes up an important place among in the recent contributions on the role of the hippocampus in memory. They evaluate the effect of bilateral damage to the hippocampus on performance by human participants in a virtual 8-arm radial maze. The hippocampal damage appears to be highly selective and nearly complete. Exactly as with selective hippocampal damage in rats, the human participants showed a deficit in accurately choosing rewarded versus never-rewarded arms and a deficit in avoiding reentering recently visited arms. The results are triply significant: (1) They provide good support for the idea that the wealth of neurobiological information, from network to synapse to gene, on spatial memory in the rat may apply as a whole to the human hippocampal memory system; (2) They affirm the utility of human virtual task models of rat spatial memory tasks; (3) They support one interpretation of the dampening of the hippocampal functional MRI (fMRI) blood oxygen level-dependent (BOLD) signal during performance of the virtual radial arm maze observed by Astur et al. (2005).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.