Abstract
In order to grasp the force performance and stress distribution of shaped pylon steel anchor box under the action of the cable tension, with a main span of 555m length of three towers cable-stayed and self-anchored suspension combined system bridge as the engineering background, through the ANSYS APDL command stream parametric programming, the different finite element models of pylon steel anchor box is established by the spatial solid element and shell element, the mechanical properties of cable-pylon anchorage zone were studied under the most unfavorable load combination, considering the stress state and distribution characteristics of steel anchor box under different orthodontic force. The results showed that, under the most unfavorable combination of loads, the stress was concentrated at the position of the anchor plate and pressure plate using the initial strain mode; the calculation results of solid element and shell element were consistent by uniform loading mode, which could reflect the real stress state of steel anchor box, but the shell element corner contact area prone to stress calculation distortion. The results provide the basis for the design and have some design reference value for the design of the same type bridge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.