Abstract

Abstract Population growth and overexploitation of water resources pose ongoing pressure on groundwater resources. This study compares the capability of four data mining methods, namely, boosted regression tree (BRT), random forest (RF), multivariate adaptive regression spline (MARS), and support vector machine (SVM), for water spring potential mapping (WSPM) in Al Kark Governorate, east of the Dead Sea, Jordan. Overall, 200 spring locations and 13 predictor variables were considered for model building and validation. The four models were calibrated and trained on 70% of the spring locations (i.e., 140 locations) and their predictive accuracy was evaluated on the remaining 30% of the locations (i.e., 60 locations). The area under the receiver operating characteristic curve (AUROCC) was employed as the performance measure for the evaluation of the accuracy of the constructed models. Results of model accuracy assessment based on the AUROCC revealed that the performance of the RF model (AUROCC = 0.748) was better than that of any other model (AUROCC SVM = 0.732, AUROCC MARS = 0.727, and AUROCC BRT = 0.689).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.