Abstract
We have developed a scanning photoluminescence technique that can directly map out the local two-dimensional electron density with a relative accuracy of ∼2.2 × 108 cm-2. The validity of this approach is confirmed by the observation of the expected density gradient in a high-quality GaAs quantum well sample that was not rotated during the molecular beam epitaxy of its spacer layer. In addition to this global variation in electron density, we observe local density fluctuations across the sample. These random density fluctuations are also seen in samples that were continuously rotated during growth, and we attribute them to residual space charges at the substrate-epitaxy interface. This is corroborated by the fact that the average magnitude of density fluctuations is increased to ∼9 × 109 cm-2 from ∼1.2 × 109 cm-2 when the buffer layer between the substrate and the quantum well is decreased by a factor of 7. Our data provide direct evidence for local density inhomogeneities even in very high-quality two-dimensional carrier systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.