Abstract
Lateral heterogeneities in atomically thin 2D materials such as in-plane heterojunctions and grain boundaries (GBs) provide an extrinsic knob for manipulating the properties of nano- and optoelectronic devices and harvesting novel functionalities. However, these heterogeneities have the potential to adversely affect the performance and reliability of the 2D devices through the formation of nanoscopic hot-spots. In this report, scanning thermal microscopy (SThM) is utilized to map the spatial distribution of the temperature rise within monolayer transition metal dichalcogenide (TMD) devices upon dissipating a high electrical power through a lateral interface. The results directly demonstrate that lateral heterojunctions between MoS2 and WS2 do not largely impact the distribution of heat dissipation, while GBs of MoS2 appreciably localize heating in the device. High-resolution scanning transmission electron microscopy reveals that the atomic structure is nearly flawless around heterojunctions but can be quite defective near GBs. The results suggest that the interfacial atomic structure plays a crucial role in enabling uniform charge transport without inducing localized heating. Establishing such structure-property-processing correlation provides a better understanding of lateral heterogeneities in 2D TMD systems which is crucial in the design of future all-2D electronic circuitry with enhanced functionalities, lifetime, and performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.