Abstract

Abstract This article studies fine motor strategies for precise spatial manipulation in close-to-body interactions. Our innate ability for precise work is the result of the confluence of visuo-tactile perception, proprioception, and bi-manual motor control. Contrary to this, most mixed-reality (MR) systems are designed for interactions at arms length. To develop guidelines for precise manipulations in MR systems, there is a need for a systematic study of motor strategies including physical indexing, bi-manual coordination, and the relationship between visual and tactile feedback. To address this need, we present a series of experiments using three variations of a tablet-based MR interface using a close-range motion capture system and motion-tracked shape proxies. We investigate an elaborate version of the classic peg-and-hole task that our results strongly suggests the critical need for high precision tracking to enable precise manipulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call