Abstract

In this study we investigated whether the spatial distribution of surface electromyographic (EMG) amplitude can be used to describe the activation of muscle portions with different biomechanical actions. Ten healthy subjects performed isometric contractions aimed to selectively activate a number of forearm muscles or muscle subportions. Monopolar electromyographic signals were collected with an electrode grid of 128 electrodes placed on the proximal, dorsal portion of the forearm. The monopolar EMG amplitude [root mean square (RMS) value] distribution was calculated for each contraction, and high-amplitude channels were identified through an automatic procedure; the position of the EMG source was estimated with the barycenter of these channels. Each of the contractions tested was associated to a specific EMG amplitude distribution, whose location in space was consistent with the expected anatomical position of the main agonist muscle (or subportion). The position of each source was significantly different from the others in at least one direction (ANOVA; transversally to the forearm: P < 0.01, F = 125.92; longitudinally: P < 0.01, F = 35.83). With such an approach, we could distinguish the spatial position of EMG distributions related to the activation of contiguous muscles [e.g., extensor carpi ulnaris (ECU) and extensor digitorum communis (EDC)], different heads of the same muscle (i.e., extensor carpi radialis (ECR) brevis and longus) and different functional compartments (i.e., EDC, middle, and ring fingers). These findings are discussed in terms of how forces along a given direction can be produced by recruiting population of motor units clustered not only in specific muscles, but also in muscle sub-portions. In addition, this study supports the use of high-density EMG systems to characterize the activation of muscle subportions with different biomechanical actions.

Highlights

  • Activities require the availability of multiple degrees of freedom in the upper limb joints

  • We demonstrated that the spatial properties of the monopolar EMG amplitude distribution over the proximal forearm can be used to discriminate different contractions

  • In this study, the spatial distribution of EMG amplitude over the proximal, dorsal portion of the forearm was quantitatively described during selected wrist and finger isometric contractions

Read more

Summary

Introduction

Activities require the availability of multiple degrees of freedom in the upper limb joints. Anatomical partitioning was described within the extensor carpi ulnaris muscle (ECU), with up to four partitions defined in virtue of nerve branches insertion and muscle fiber orientation (Segal et al, 2002). As all these muscles (or muscle compartments) responsible for different wrist and finger movements are placed in a relatively small body area (the dorsal portion of the forearm), the possibility to discriminate their activation is essential for studies investigating wrist and hand motor control

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call