Abstract
Accurately obtaining accurate information about the future traffic flow of all roads in the transportation network is essential for traffic management and control applications. In order to address the challenges of acquiring dynamic global spatial correlations between transportation links and modeling time dependencies in multi-step prediction, we propose a spatial linear transformer and temporal convolution network (SLTTCN). The model is using spatial linear transformers to aggregate the spatial information of the traffic flow, and bidirectional temporal convolution network to capture the temporal dependency of the traffic flow. The spatial linear transformer effectively reduces the complexity of data calculation and storage while capturing spatial dependence, and the time convolutional network with bidirectional and gate fusion mechanisms avoids the problems of gradient vanishing and high computational cost caused by long time intervals during model training. We conducted extensive experiments using two publicly available large-scale traffic data sets and compared SLTTCN with other baselines. Numerical results show that SLTTCN achieves the best predictive performance in various error measurements. We also performed attention visualization analysis on the spatial linear transformer, verifying its effectiveness in capturing dynamic global spatial dependency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.