Abstract
We examined the effects of brief exposure to weak 60 Hz extremely low frequency (ELF) magnetic fields and opioid systems on spatial behavior and learning in reproductive adult male and female deer mice, Peromyscus maniculatus. Sex differences were evident in spatial performance, with male deer mice displaying significantly better performance than female mice in the Morris water maze, whereby animals had to acquire and retain the location of a submerged hidden platform. Brief (maximum 5 min) exposure to weak (100 microT) 60 Hz magnetic fields during task acquisition significantly improved female performance, eliminating the sex differences in acquisition. The opiate antagonist, naltrexone, also improved female acquisition, though significantly less than the magnetic fields. These facilitatory effects involved alterations of "non-spatial" (task familiarization and reduction of related anxiety/aversive related behaviors) and possibly "spatial" aspects of the task. Enhancement of enkephalin activity with the enkephalinase inhibitor, SCH 34826, significantly reduced task performance by male deer mice. Both naltrexone and the 60 Hz magnetic fields attenuated the enkephalin mediated reductions of spatial performance. These findings indicate that brief exposure to 60 Hz magnetic fields can enhance water maze task acquisition by deer mice and suggest that these facilitatory effects on spatial performance involve alterations in opioid activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.