Abstract

Kramers–Kronig theory points to a new way of designing perfect anti-reflection surfaces. When a planar dielectric medium has a permittivity profile that is an analytic function in the upper or lower half of the complex position plane x = x′ + ix″ then the real and imaginary parts of its permittivity are related by the spatial Kramers–Kronig relations. We find that such a medium will not reflect radiation incident from one side, whatever the angle of incidence. Using the spatial Kramers–Kronig relations, one can derive a real part of a permittivity profile from some given imaginary part (or vice versa) such that the reflection is guaranteed to be zero. This result is valid for both scalar and vector wave theories and may have relevance for designing materials that efficiently absorb radiation or for the creation of a new type of anti-reflection surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.